Reprinted from Research and Industry, 1968, Vol. 13, No. 3, pp. 125-128

Modified Lacs as Compounding Ingredients of Styrene-Butadiene Rubber: Part II-Epoxidized Lac in Filled Stock

B. B. KHANNA Indian Lac Research Institute, Namkum, Ranchi Manuscript received 14 July 1967

The relative performance of epoxidized lac and straight shellac as compounding ingredients in styrene-butadiene rubber stock containing different fillers (HAF black, EPC black and clay) has been investigated. With HAF black as the filler, epoxidized lac raises the scorch time, tensile strength and tear resistance of the stock; straight shellac has an adverse effect on these properties. With EPC black, epoxidized lac imparts greater hardness to the stock than straight shellac; the improvements in the value of modulus and the swelling behaviour are of the same magnitude with both epoxidized lac and shellac. With clay as the filler, epoxidized lac brings about greater improvement in the tear resistance of the stock than straight shellac; the modulus, degree of hardness and resilience are improved to the same extent by both epoxidized lac and shellac.

T was reported in an earlier communication¹ that epoxidized lac brings about greater improvement in the mechanical properties of styrene-butadiene rubber gumstock than straight (unmodified) shellac.

126

The relative performance of epoxidized lac and straight shellac in the presence of different fillers has now been investigated and the results are presented in this paper.

Experimental procedure

The compositions of the various mixes are given in Tables 1-3. The fillers used were HAF black (Philblack 0) (Phille's Carbon Black, Calcutta), EPC black (M/s National Rubber Manufacturers, Calcutta). All the other chemicals used were the same as in the earlier study¹. The methods employed for mixing, vulcanization and physical testing were the same as reported earlier¹.

Results and discussion

Effect of adding HAF black as filler — The physical properties of the mixes containing HAF black (ϕ H 8-9) are given in Table 1. The base composition was similar to that of a tread type compound. It is seen that the time for optimum cure is not altered by the addition of shellac, but is enhanced by epoxidized lac.

The addition of both shellac and epoxidized lac results in slight lowering of Mooney viscosity; the magnitude of the lowering is the same for both of them, indicating that they help in the dispersion of the compounding ingredients to the same extent. While the scorch time falls on adding shellac, it is slightly increased on adding epoxidized lac.

The reduction in scorch time with shellac can be ascribed to the activity of the hydroxyl groups present in it; a similar observation has been made with the gumstock also¹. The slight increase in the value of scorch time on incorporating epoxidized lac is a welcome feature, as furnace blacks are otherwise scorchy and tend to hinder the processing of the stock.

The superiority of epoxidized lac over straight shellac is also brought about by the trend in the variation of other characteristics of the stock. While the increase in hardness as a result of the incorporation of shellac and epoxidized lac is of the same order, the addition of epoxidized lac (up to 5 parts per 100 parts rubber) increases the tensile

	1;	iour	et.		44 84	49 50		47 48 49	
filler	tocure,	behav ase, %	E B		,				
black	i sani	ersion incre	zene		170	195 208		182 190 204	
HAF	acid, 1	J'um	Ben	5					
ics of styrene-butadiene rubber using I	ul oil, 5; zinc oxide, 4; sulphur, 2; stearic 45)	Abrasion loss	evolutions		0.62	0.79	1	0.71	
		Impact resilience	-		50-4 50-4	48.8 45.8	1.1.1.1.1.1	50-4 47-3 45-8	1°C.
		Durometer hardness			61 64	65 66		64 65 66	hr at 25 ±
		Tear re-	1. S. Iom.	LAC	68.7 70.4	65-0 54-2	ED LAC	73.4 10.2 68.1	Ent for 96
aracterist	40; minego BN, 1 par	Tensile strength	1.2. in a line i	ESIN, SHEL	161.5 148.1	140-7 132-0	EPOXIDIZI	170-2 165-4 159-0	in the solv
on the ch	HAF black, and F	Ultimate longation	0/	R	400 425	440 450	RESIN,	450 500 520	immersed
xidized lac	ubber, 100; H	Modulus '1 (at 200% e	kg./cm.2		56-5 56-0	50-5 46-9		47-0 40-4 39-9	te stock was
c and epo	nutadiene ri	Scorch time			37 36	35 33	1 8 1	39 39 40	łT*
t of shellad	1: Styrene-l	Mooney viscosity	120°C.)		46 45	44		45 45 45	
1 - Effect	composition	Optimum cure time	(au 170 U.) min.		45 54 55	45		0000	
Table	(Base mix	Shellac or epoxidized	parts/100 parts rubber		0 2.5	5.0 10-0		2.5 5.0 10.0	

														1		
,	T, 1.5;	e, %)* Pet.		, 57 , 48 , 49 , 49		444 42 48 48	5	ller	T, 1.5;	c, %)*	Pet. ether	445 85 85 76 85 85 85 85 85 85 85 85 85 85 85 85 85		5555		
2 - Effect of shellac and epoxidized lac on the characteristics of styrene-butadiene rubber using EPC black fi	acid, 1; MB	Immersion be (wt increas Benzene		290 218 240 258	196 200 315		la clay as fil	acid, 1; MB:	Immersity be (wt increased	Denzene	224 235 247 300 352		275 327 328 330			
	r.,2; stearie	Abrasion . loss ml./1002 revolutions		. 1-7 2:3 3:1 3:3	337.08 337.08 39.07 20.09 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.0	using chir	; 2; stearic	Abrasion loss ml./1000 revolutions				2.95 3.20 3.80 4.40	1			
	4; sulphu	Impact resilience %		56-8 55-1 50-4 48-8 45-8		53.5 48.8 45.8 44.3	±1°C.	cs of styrene-butadiene rubber	veral oil, 3; zinc oxide, 4; sulphun wis)	. Impact resilience		43.7 44:3 44:3 42:9 42:9		44.3 43.7 42.9 42.3		
	zinc oxide,	Durometer hardness		22 65 52 88 21 65 62 88		65 69 77.	96 hr at 25			Durometer hardness		64 77 72 77 72		68 72 74 76 5 hr at 25 +	TTT ON TTT	
	wts) (01, 2;	Tear re- sistance kg./cm.	AC	52-1 50-8 49-4 46-1 41-6	D LAC	, 40.0 40.5 40.5	olvent for 9			Tear re- sistance kg./cm.	LAC	26:3 30:3 28:7 26:0 26:0	D LAC	32.5 20.5 30.0 30.5 Vent for 96		
	ck, 70, mun PBN, 1 po	Tensile strength kg./cm. ²	RESIN, SHELI	ESIN, SHELI	80-1 64-0 58-4 51-1 44-4	EPOXIDIZI	57-2 53-0 49-2 44-1	ed in the s	aracteristi	vy, 100; mi PBN, 1 ‡	Tensile strength kg./cm. ²	ESIN, SHEL	50.0 51.1 41.4 38.7 36.5	EPOXIDIZE	55.4 41.0 39.5 38.0 1 in the sol	
); 'EPC bla, and	Ultimate elongation %		450 500 510 500	NUC 1.10 RESIN,	450 500 620 620	vas inmers	and epoxidized lac on the chi	; china cla and	Ultimate elongation %	R	800 1100 850 870 890	RESIN,	1000 1100 900 as immerse		
	e rubber, 100	Modulus (at 200%) elongation) <i>kg./cm.</i> ²		22.6 25.6 27.2 31.1		27.7 27.2 27.1 27.0	*The stock		e rubber, 100	Modulus (at 200% elongation) kg./cm. ²	;	18:1 20:3 21:9 22:1 22:1		20·9 21·0 21·2 21·5 Ťhe stock w	11 11 11 11 11	
	butadien	Scorch time <i>min.</i>		533 44 49 88 84 49		44 33 33 33			butadien	Scorch time <i>min.</i>		60 57 57 57		53 50 47 43 *		
	n: Styrene-	Mooney viscosity (ML 4 at · 120°C.)		40.5 330.5 33.0 33.0		302 32 33 302 338		t of shellac	n: Slyrene-	Mooney viscosity (ML 4 at 120°C.)		44 44 40 40 40 40		45 38 36		
	compositio	Optimum cure time (at 140°C.) <i>min.</i>		00000		00000000000000000000000000000000000000	115-11	3 - Effect	compositio	Optimum cure time at 140°C.) <i>min.</i>		6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		<u> </u>	Church	
Table	(Base mix	Shellac or epoxidized lac added parts/100 parts rubber		20 11 20 20		5 115 20		Table	(Base mix	Shellac or epoxidized lac added (parts/100	parts rubber	0 10 20 20		20115 205 205 205 205 205 205 205 205 205 20	and a second second	

MODIFIED LACS AS COMPOUNDING INGREDIENTS OF SBR: PART D

MODIFIED LACS AS COMPOUNDING INGREDIENTS OF SBR: PART II

streng h and tear resistance, though shellac has an adverse effect on these properties.

There is no effect of incorporating up to 2.5 parts of shellac or epoxidized lac per 100 parts rubber on the resilience $\sim t$ the stock. The abrasion resistance falls slightly; the fall is more with straight shellac than with epoxidized lac.

Effect of adding EPC black — When EPC black (pH 3·8-5·0) is used as the filler, the time for optimum cure is not affected by the addition of either shellac or epoxidized lac (Table 2). Incorporation of shellac or epoxidized lac again helps in giving enhanced plasticization (lower Mooney No.), the effect being more with epoxidized lac. Both shellac and epoxidized lac tend to be scorchy.

An appreciable enhancement in hardness is brought about by the incorporation of both shellac and epoxidized lac, the latter having a more noticeable effect. Other beneficial effects are increase in modulus and resistance towards benzene and petroleum ether, which are nearly of the same order with both types of lac.

Effect of adding china clay as filler — Rubber compositions incorporating china clay as a filler are specially used for flooring and for the preparation of extruded goods, such as hoses and tubes. It is seen from Table 3 that using china clay (pH of slurry, 5·0) as a filler, the time for optimum cure of the compositions is not affected when shellac is present, but is somewhat enhanced in the presence of epoxidized lac. The plasticization brought about by shellac or epoxidized lac is shown by the lowering of Mooney viscosity, the effect of epoxidized lac being more prominent than that of shellac. The scorch time is reduced by both shellac and epoxidized lac.

The incorporation of shellac or epoxidized lac has a beneficial effect on modulus inordness and resilience nearly to the same extent, while tear resistance is enhanced somewhat more with epoxidized lac. Tensile strength is improved by the incorporation of both shellac and epoxidized lac up to the level of 5 parts/100 parts rubber; the improvement is more with epoxidized lac than with shellac.

The abrasion resistance is slightly impaired by the addition of both shellac or epoxidized lac. However, the detrimental effect is much less than that when black fillers are used.

Acknowledgement

The author is grateful to Dr G. S. Misra, Director and Shri Y. Sankaranarayanan and Dr T. Bhowmik, Senior Scientific Officers for helpful suggestions during the course of the work and to the authorities of the Indian Institute of Technology, Kharagpur for providing testing facilities. Thanks are also due to M/s National Rubber Manufacturers and M/s Phillips Carbon Black, Calcutta and M/s Firestone, Bombay for the free supply of fillers.

References

1. KHANNA, B. B., Res. & Ind., 13 (1968), 121.